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1. Introduction 
 

A major challenge in predicting the consequences of global climate change is to accurately estimate carbon 
stocks and to predict future CO2 sequestration and dynamics (NRC, 1999). Climate dynamics and human activities 
drive changes in land cover and land use, creating unpredictable patterns of disturbance and environmental stresses 
in natural and managed ecosystems.  These changes affect carbon storage, the distribution of carbon in above and 
below ground compartments, ecosystem productivity, and biogeochemical cycles. A wide range of information is 
needed to monitor the carbon cycle from properties that regulate fluxes of CO2, to estimates of standing biomass, 
land cover types, and land use history. Satellite observations provide the only practical means to obtain a synoptic 
view of the Earth’s ecosystems, their spatial distribution, extent, and temporal dynamics.   
 

Four priority areas have been identified where improved satellite observations of terrestrial landscapes 
could contribute to greatly reducing the uncertainties in the global carbon budget.  These are: (1) land cover 
characterization at improved spatial resolution, (2) above-ground biomass estimates, (3) areal estimates of 
disturbance, disturbance type, and time period since the last disturbance, and (4) improved estimates of productivity 
and controls on productivity.  While these categories do not exclusively require hyperspectral data, it can contribute 
to significant improvements in reducing uncertainties in each area. 
 

Among most important information that satellite observations can contribute is the distribution of land 
cover types, in particular vegetation, and their spatial variability.  For terrestrial biomes, information is needed on 
the growth form, the cover fraction, canopy density, seasonality and duration of the growing season, the leaf type 
(conifer, broadleaf) and the photosynthetic pathway (producing four-carbon (C4) or three carbon (C3) carbohydrate 
products) associated with specific carbon uptake characteristics (DeFries et al. 1995; 1999).  To understand the 
consequences of land cover and land use change on the carbon budget, both the biophysical and the human factors 
that drive land cover and land use changes must be addressed. Natural disturbances (such as wildfire, floods, insect 
infestations), and human-induced disturbances (e.g., agriculture, urbanization, and logging) may change large areas 
of the Earth’s surface, but more subtle changes may also result in habitat degradation and fragmentation (e.g., 
selective logging, soil erosion, and pollution). The introduction of non-native species can lead to significant changes 
at the ecosystem scale in carbon storage and fluxes, redistribution of species, and/or losses of biodiversity. Current 
satellite observations are inadequate to characterize and verify land cover at the spatial scales needed to assess their 
impacts on the carbon budget.   
 

Land cover characteristics influence many of the mass and energy exchange processes at the land-
atmosphere interface (Cihlar et al., 1997) with a functional dependency on the land cover type. Land use changes 
play an important additional role because these cause uncertainty in the net flux of CO2 and the required size of a 
terrestrial sink (Schimel, 1995).  Therefore accurate spatial distribution and percent aerial coverage of the major 
cover types is essential for correct process modeling.  However, current land cover maps derived from AVHRR are 
coarse at the global scale (e.g., 0.5° - 1°), and primarily rely only on NDVI or a monthly time series to differentiate 
land cover characteristics (DeFries et al., 1999; Potter et al., 1998; Veroustraete et al., 1996). These NDVI maps are 
used to generate estimates of multiple model parameters including carbon fluxes, carbon stores, carbon turnover 
rates, and other land cover properties that impact the carbon budget. Furthermore, NDVI is also used to estimate 
carbon assimilation processes using fraction of absorbed photosynthetically active radiation (fPAR), net primary 
productivity (NPP) and net ecosystem productivity (NEP).   
 

Hyperspectral data, having many more spectral bands, provide more independent measures of land surface 
characteristics.  Boardman and Green (2000) explored the intrinsic dimensionality of 510 AVIRIS scenes having a 
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range of land cover characteristics and found at least 60-70 above a conservative noise floor, with many individual 
scenes exceeding 50 spectral dimensions.  Because of the scale of variability in ecosystem properties, high spatial 
resolution (10-100m) is considered critical to developing land cover characterizations, at least for developing 
appropriate and testable scaling methods to understand the non-linearities in aggregating land cover properties to 1° 
grids.  Green and Boardman (2000) investigated data dimensionality in AVIRIS data and found that the increased 
signal-to-noise obtained in larger pixels (in this case from 4m to 32m) enhanced the dimensionality despite loss of 
spatial resolution.  This suggests that hyperspectral instruments would not require hyperspatial pixel resolutions.  
This paper discusses the approaches and variables used for estimating the carbon budget on terrestrial surfaces and 
the improvements that a hyperspectral satellite sensor could make to reducing the overall uncertainty in the carbon 
budget. 
 
 
2. The role of hyperspectral sensors for carbon estimates by improving land cover classification 
 

Key variables are mapping land cover, land use, and land cover conversions, either occurring naturally or 
due to human disturbances.  In all cases where instruments have been compared, HSI instruments provide more 
detailed information about land cover. For example, predicting whether a boreal forest will become a carbon sink or 
source demands an accurate knowledge of the distribution of the cover classes in this ecosystem (Steyaert et al., 
1997). Ustin and Xiao (2001) compared boreal forest classifications from SPOT and AVIRIS and showed much 
greater delineation of types and fidelity to a pre-existing field-based map despite similar spatial resolution. 
 

Obtaining baseline maps of the composition of the boreal landscape is of high priority due to predictions 
for large increases in temperature in this century (IPCC, 1996), the relative inaccessibility of the region, and the 
potential for feedbacks with other trace gases, e.g., CH4 production.  Landscape heterogeneity (e.g. deciduous and 
evergreen forests, fens, bogs and small lakes) in boreal ecosystems call into question coarse spatial resolutions 
between 1 km and 1º x 1º, land cover classification provided by multi-temporal AVHRR data, and persist even with 
higher spatial resolution Landsat TM data (Steyaert et al., 1997).  These issues have been continuously addressed 
within the BOReal Ecosystem-Atmosphere Study (BOREAS) since a critical contribution to remote sensing science 
in BOREAS was the development of accurate land cover information at local and regional scales (BOREAS 
Experiment Plan, 1994; Sellers et al. 1995).  Land cover was mapped at 30m with Landsat TM utilizing a 
physically-based classification algorithm that employed geometric canopy reflectance models (Hall et al., 1995; 
1997). Nevertheless, classification accuracies using such an approach remained low for fens (a major source of 
methane) and upland conifers. Improvements in land cover mapping were identified as a priority and enhancements 
were attempted using physical-modeling approaches (Hall et al., 1997; Peddle et al., 1997), and neural networks 
(Benediktsson et al., 1990; Duguay and Peddle, 1996). Zarco-Tejada and Miller (1999), and by Fuentes et al. (in 
press), exploited systematic species differences using hyperspectral instruments and exploiting wavelength regions 
sensitive to foliar chemistry to obtain significant improvements in land cover characterization of the BOREAS 
region. Zarco-Tejada and Miller (1999) improved land cover classification (Figure 1) using 16 CASI bands at the 
TM spatial resolution (originally 3m resampled to 30m) based on three red-edge spectral parameters: the red-edge 
inflection point (λp), the wavelength at the reflectance minimum (λo), and a shape parameter (σ), as defined by the 
inverted-gaussian red-edge curve-fit model (e.g. Hare et al., 1984), and discussed by Miller et al. (1990; 1991).  
 

Their approach was based on the separation of land cover types using variables known to affect red edge 
spectral parameters: vegetation chlorophyll content, canopy structure and canopy cover. An extension of this work 
by Fuentes et al. (in press) (Figure 2) used pigment classes in a spectral unmixing procedure to map the relative 
abundance of pigments, and seven indices of vegetation structure and physiological function related to the pigment 
content and calculated from water absorption features. Indices such as the water band index (WBI, Peñuelas et al., 
1997), and the normalized difference water band index (NDWI, Gao, 1996) have been shown to be good indicators 
of leaf and canopy water content, which vary with vegetation type, LAI, and physiological state (Ustin et al., 1998; 
Gamon and Qiu, 1999; Serrano et al., 2000). Accuracy assessment of the resulting land cover map, when compared 
to forest inventory classifications, showed significantly improved classification accuracy with red-edge indices, 
which exceeded 68% for all classes (Zarco-Tejada and Miller, 1999) and improved to 66.6-80.1% (Fuentes et al., in 
press) by including water-based indices. 
 

Therefore, hyperspectral sensors enable the use of individual spectral features related to pigment 
composition (Gitelson and Merzylak, 1996, 1997; Gamon and Surfus, 1999), canopy water content (Peñuelas et al., 



 

 

1997; Ustin et al., 1998; Serrano et al., 2000), canopy dry plant litter and/or wood (Roberts et al., 1993; Ustin et al., 
1993, 1996, 1998, Asner et al., 1998), and forest composition as function of foliar chemistry (Martin et al., 1998; 
Zarco-Tejada and Miller, 1999; Fuentes et al., in press) achieving better discrimination of vegetation classes than 
possible from broadband sensors. 
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Figure 1. Land cover classes (aggregated into the 7 functionally-dominant landscape units) for the BOREAS 
Southern Study Area, based on polygon data from Saskatchewan Environment and Resource Management used as 
ground truth (top-left), land cover classification based on Landsat TM data and the physical modeling approach of 
Hall et al. (1995, 1997) (top-right), and classification using the red edge spectral parameters λp, λo, and σ based on 
CASI hyperspectral mosaic of the BOREAS SSA modeling grid, re-sampled to 30 m spatial resolution (Zarco-
Tejada and Miller, 1999). 



 

 

 
Figure 2. Jack pine-fen (JP-FEN) site (top panels) and Old black spruce (OBS) site 
(bottom panels). For the evaluation of classification accuracy, the SERM-FBIU 
(Gruszka, 1998; Panels A & E), obtained from the BOREAS Information System 
(BORIS), was assumed to be true. The Landsat TM physical classification (Hall, 1999; 
Panels B & F). The, AVIRIS leaf-based (Panels C & G) and index-based (Panels D & H) 
maximum likelihood classifications were derived from the July 21, 1994 overflight. 
(Fuentes et al., in press). 

 

 
 
3. Carbon estimates with multispectral coarse resolution remote sensing data 
 

Global estimates of CO2 dynamics using ecosystem models such as Simple Biosphere Model, SiB2 (Sellers 
et al., 1986, 1996a,b) and CASA (Potter et al., 1993; Field et al., 1995; Randerson et al., 1997) obtain input data 
from AVHRR-derived NDVI data to capture biophysical and ecological properties used in the models. NDVI is 
affected by both pigment absorption (blue and red) and the scattering of the medium (NIR), a function of the 
arrangement of elements of the canopy (structure).  Moreover, it is well documented that NDVI saturates at leaf area 
index (LAI) values substantially below LAI in high productivity sites.  Limitations of current methods for deriving 
canopy biophysical (LAI, structure) and leaf biochemical constituents (chlorophyll (chla+b), nitrogen (N), and water 
content (H2O)) limits accuracy when estimating the significance of photosynthetic processes in regulating some 
components of the carbon cycle.  Moreover, no current remote sensing approaches provide reliable estimates of 
other critically important ecosystem-level properties such as senescent vegetation (e.g., dry carbon loading) or 
canopy structural changes.  Observations of these factors, which have been demonstrated from hyperspectral 
imaging systems, would provide a major step toward an improved understanding of the carbon cycle. 
 

Widely used ecosystem models (Sellers et al., 1986, 1996a,b) and CASA (Potter et al., 1993; Field et al., 
1995; Randerson et al., 1997) use remotely sensed data products for estimating carbon allocation, including new 
model advances such as a 6-layer soil submodel (Bonan, 1996, 1998). Explicit litter layer (Denning et al., 1996), 



 

 

new parameterizations of carbon and nitrogen allocation, growth and maintenance respiration and decomposition are 
obtained using new hybrid ecosystem models, e.g., 
incorporating SYLVAN (Kaduk 1996; Kaduk and Heimann 
1996a,b). However remote sensing paramaterizations have 
not advanced and NDVI is used to simultaneously estimate 
LAI, evapotranspiration, photosynthesis, primary 
productivity and carbon cycling. 
 

A number of studies have shown that the NDVI 
saturates at LAI of 3-4 (Sellers, 1986), while LAI exceeds 
this for most closed-crown crops and forests. NDVI 
saturation under-estimates the fluxes of CO2 and H2O, and 
this error feeds back into other physiological processes. One 
of the key driving variables used by CASA and SiB-2 
models is the flux of absorbed PAR, with gross CO2 uptake, 
NPP, and canopy conductance all scaled to NDVI. In 
theory, absorptance of PAR is proportional to NDVI but 
because both saturate most of the variability occurs at LAI 
values < 3. Canopies with large variations in LAI also 
exhibit large differences in total photosynthetic capacity and 
the quantity of nitrogen and other nutrients in the canopy are 
incorrectly inferred from an NDVI parameter.  NDVI failed 
to track variation in pigment content, such as might occur 
under environmentally induced plant stress at study sites 
with high LAI values (Zarco-Tejada, 2000). Furthermore, 
maximum site LAI, governed by climate and site conditions 
is often reached at an early stage of growth while non-
photosynthetic components of biomass (stems, roots) 
continue accumulation throughout the growing season. This 
biomass estimate saturates at relatively low levels of 
biomass, and causes NDVI to markedly under-estimate 
biomass in woody vegetation.  Fluxes of CO2 and H2O, feed 
back into other physiological processes that are also under 
estimated. Figure 3 shows NDVI, red-edge spectral 
parameter λp, and estimated canopy water content, 
calculated from cotton fields using hyperspectral AVIRIS 
data. It can be seen that NDVI does not correspond to λp, 
which is highly correlated with pigment content, and 
functionally with canopy water content. 
 

The accuracy of carbon model predictions in 
vegetation at higher spatial scales will improve estimates of 
biophysical parameters through more effective linkage 
between leaf and canopy radiative transfer models (RT) 
from hyperspectral data. Estimates of leaf chla+b and its 
relationship to N content, LAI, and canopy H2O, are 
biophysical parameters that can be retrieved from 
hyperspectral canopy reflectance data by inversion of 
coupled leaf and canopy models. 
 
 
3.1. Estimation of other physiological variables using hyperspectral remote sensing 
 

The carbon system is closely linked to the water and energy cycles through regulation of photosynthesis 
(Sellers et al., 1992; Sellers and Schimel, 1993; Collatz et al., 1991), and to the nitrogen cycle through metabolism 
(Schimel, 1995).  Correctly predicting the linkages between the carbon, water, and nitrogen cycles is crucial to 

 
Figure 3. NDVI (top), red edge spectral 
parameter λp (middle), and canopy water content 
(bottom), calculated from the same cotton fields 
from AVIRIS data. 



 

 

predicting the changing Earth system and 
feedback to atmospheric concentrations of 
greenhouse gases and primary productivity of 
the biosphere (Schimel, 1995). 
 

The global carbon cycle (i.e., through 
CO2 uptake) is affected by alteration of the 
global N cycle through fertilizer use and air 
pollution (Schimel, 1995; Vitousek et al. 
1997). Fertilization of agricultural crops and N 
deposition affect carbon storage, generate 
vegetation injury with prolonged N additions 
(Schultze et al., 1989) and increase N losses 
by gaseous and solute pathways to the soil.  
Spatial estimation of N in forest and 
agricultural canopies is important to quantify 
interactions between the carbon and nitrogen 
cycles. Estimating leaf nitrogen content is 
obtained through total chlorophyll 
concentration, because the majority of leaf N 
is contained in the carbon-fixing enzyme, 
RUBP-carboxylase (Daughtry et al., 2000; 
Yoder and Pettigrew-Crosby, 1995). 
Estimating chlorophyll content from canopies 
with different structural characteristics 
requires hyperspectral data to couple specific 
radiative transfer models with leaf models 
using red-edge indices in the merit function 
while minimizing the effects of canopy 
shadows, understory, and large variations of 
LAI (Zarco-Tejada et al., in press; Zarco-
Tejada, 2000). Therefore, accurate estimates of 
leaf chla+b at canopy levels with high spatial 
resolution hyperspectral reflectance data is 
critical for obtaining estimates of leaf N. Estimation of canopy concentrations of chla+b have been demonstrated by 
model inversion using hyperspectral remote sensing data (Jaquemoud, 1993; Jacquemoud et al., 1995; Kuusk, 1998; 
Demarez and Gastellu-Etchegorry, 2000; Jacquemoud et al., 2000; Zarco-Tejada, 2000; Zarco-Tejada et al., in 
press). Specific results by Jaquemoud (2000) and Zarco-Tejada et al. (in press) using airborne hyperspectral data 
showed errors of RMSE = 3-8 µg/cm2 for chla+b estimated by linking leaf radiative transfer model (PROSPECT) to 
infinite reflectance (Hapke, 1993; Yamada and Fujimura, 1991) and canopy reflectance models (SAILH, Kuusk, 
SPRINT) (Figure 4). These results show accurate estimates of leaf biochemical constituents from hyperspectral 
reflectance data for both crop and forest canopies (Figure 5). 
 

Many studies have demonstrated a direct relationship between the photosynthetic rate, light absorbance, 
leaf N, and dry matter production (Alt et al., 2000).  There appears to be a linear dependence of maximum 
photosynthetic capacity on leaf N to the point of species-specific optimality.  The increases in photosynthetic 
capacity are strongly correlated with the distribution of Chla+b and N within crop canopies (Fontes et al. 1997).  
Canopy N distribution exhibits a phenological shift in the LAI (Yin et al. 2000).  In addition, leaf N exhibits a linear 
relationship with increases in specific leaf mass (Garnier et al. 1999), which are associated with high N. 
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Figure 4. Estimation of leaf chla+b from canopy airborne 
hyperspectral data by inversion of SAILH+PROSPECT 
models using R750/R710 optical index in the merit 
function. Using red edge optical indices in the merit 
function for model inversion avoids effects due to canopy 
structure and shadows (using all pixels from a study plot, 
labeled as all pixels), obtaining the same pigment 
estimates when targeting crowns (labeled as upper 25%) 
from 30x30 m study sites (Zarco-Tejada et al., in press). 



 

 

 
 

  

Figure 5. Chla+b estimation by radiative transfer model inversion from airborne hyperspectral data 
over 500m x 500m study areas with extreme values of chla+b measured in the field. Model 
estimates showed good agreement with ground truth assessment (RMSE=5.5 µg/cm2) carried out 
in 30x30m sampling areas (white box), with chla+b=38.8 µg/cm2 (upper left), chla+b=45.8 µg/cm2 
(lower left), chla+b=19.08 µg/cm2 (upper right), and chla+b=26.58 µg/cm2 (lower right) (Zarco-
Tejada et al., in press). 

 
 

Leaf-level optical indices and ratios centered at the water absorption bands at 940nm and 1200nm show 
good correlations with ground-based measures of leaf water thickness (Ustin et al., 1998; Gao and Goetz, 1995; 
Serano et al., 2000) and therefore such indices can be used to map canopy water content. In contrast to NDVI, LAI 
estimated from canopy water content, remains linear to LAI > 10 (Roberts et al., 1998). Estimates of canopy water 



 

 

content contribute information about carbon sequestration at low values and by extending the range of LAI 
estimates.   

Dry carbon (C) stores, including woody stems and roots, and plant litter (i.e., dry leaves and stems) may 
indicate different ecosystem processes or conditions depending upon the specific setting (Ustin et al., 1993; Asner 
1998).  In dense forest systems, an increase in plant litter follows disturbance or stresses and has been used in 
tropical forests to assess stress (Asner et al. in review).  In drier forests, lower canopy cover allows detection of 
more plant litter on the ground and provides a spectral estimate of disturbance, physiological and biogeochemical 
processes. In sparsely vegetated shrublands and savannas dry plant litter and wood indicates fire fuel loading (Asner 
et al. 1998, Roberts et al. 1998), and thus becomes a critical observation for predicting wildfires and subsequent 
CO2 emissions.  Spatial and temporal variability of dry carbon in shrub and grassland ecosystems also indicates 
variations in climate forcing, such as in precipitation patterns.  Asner et al. (2000) and Asner and Heidebrecht (in 
press) showed that dry carbon cover and content cannot be accurately estimated using multispectral observations 
such as from Landsat or MODIS. 

 
Hyperspectral observations in the shortwave infrared (SWIR) are needed to measure dry C (Asner and 

Lobell 2000, Asner et al. 1998, 1999).  The observed variation (Figure 6) in LAI (both chla+b and H2O) and litter are 
highly non-linear mixing processes (Jacquemoud 1993, Jacquemoud et al. 1995, Asner et al. 1998).  In nature, many 
factors co-vary, creating a highly complex volume mixing problem that is best understood using hyperspectral 
observations.  For instance, while changes in LAI have the most pronounced effect on the VNIR between 0.4 – 
1.3µm, dry C has its most pronounced effect in the SWIR from 2.0 -2.4 µm. Observation of the entire reflected solar 
spectrum (0.4 - 2.5 um) provides the best chance to estimate both the cover and volumetric content of leaf and dry 
plant litter in many vegetation types. 
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Figure 6.  The non-linear effect of changing LAI (left panel) and dry C (right panel) on canopy or 
pixel-scale reflectance (Asner, 1998). 

 
For example, in savannas, shrublands and woodlands, observed variations in AVIRIS hyperspectral 

signatures were highly indicative of the 3-dimensional variation in LAI and dry C (Figure 7).  Simultaneous 
observation of both LAI and dry carbon area index (NPVAI) produced highly accurate maps of structural and 
functional vegetation types and of fire fuel load (Asner et al. 1998).  Similarly, Asner et al. (1999) quantified live 
and senescent aboveground biomass in the central Amazon basin using hyperspectral observations.  In most humid 
tropical ecosystems, the combination of LAI and NPVAI indicates nutrient limitations for both NPP and C storage 
(Asner et al. 1999).  Observed hyperspectral variation in these parameters contributes to regional carbon fluxes and 
stocks. 
 

Knowledge of soil properties and below ground C stores is limited.  While optical sensors do not penetrate 
into the soil, some surface properties can be estimated. Ahn et al. (1999) used AVIRIS data to map soil surface 
properties, demonstrating the potential to map heterogeneity and identify localized characteristics, e.g., soil organic 



 

 

carbon (SOC) and soil inorganic carbon (SIC).  
Palacios-Orueta and Ustin (1996) spectrally 
separated closely related agricultural soils and 
showed differences in SOC using AVIRIS and 
field data.  In the Santa Monica Mountains 
AVIRIS methodologies were extended to mapping 
SOC and iron content (Palacios-Orueta and Ustin 
1998; Palacios-Orueta et al., 1999).  Schreier et al. 
(1988) quantified the relationship of SOC to 
moisture, exchangeable Calcium and Magnesium 
cation exchange capacity, and soil color, with 
established procedures and reference reflectance 
libraries been developed from soil samples 
(Krishnan et al., 1980; Henderson et al., 1989; 
Henderson et al., 1992; Kimes et al., 1993; 
Wilcox et al., 1994). 

 
 
4. Conclusions 
 

Years of modeling and experimental research have shown that vegetation canopies are strongly under-
determined remote sensing problems.  Multiple combinations of vegetation structural and functional characteristics 
produce similar reflectance signatures, as have been observed in multi-spectral remote sensing instruments.  
Hyperspectral observations provide additional degrees of freedom that allow improved resolution of vegetation land 
cover maps and estimates of physiological properties e.g., LAI, fPAR, Chla+b and H2O.  Imaging spectroscopy opens 
the door to measurements that are directly indicative of ecosystem structure and functioning, such as chlorophyll 
concentration and dry C loading.  
 

Hyperspectral data from a satellite platform can provide the best information, with current technology, on 
how the global carbon budget is changing.  The design of a sampling instrument with pointing capability and 
Landat-type spatial resolution (30 m) and nadir repeat frequency (16 day), a 40-60 km swath (e.g., SPOT), and 200 
spectral bands at AVIRIS quality signal-to-noise (e.g., 1000:1 in VNIR and 500:1 SWIR) would provide the 
information needed to significantly reduce uncertainties in the global carbon budget. 
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